
  

AFRL-IF-RS-TR-2007-200 
Final Technical Report 
September 2007 
 
 
 
 
 
 
RAPID COMMUNITY OF INTEREST (COI) 
INFOSPACES CREATION AND DEPLOYMENT 
USING KAOS AND CMAPS  
 
  
Florida Institute for Human and Machine Cognition (IHMC)  
  
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
 

STINFO COPY 
 
 
 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 



  

  
NOTICE AND SIGNATURE PAGE 

 
 
 
Using Government drawings, specifications, or other data included in this document for 
any purpose other than Government procurement does not in any way obligate the U.S. 
Government. The fact that the Government formulated or supplied the drawings, 
specifications, or other data does not license the holder or any other person or 
corporation; or convey any rights or permission to manufacture, use, or sell any patented 
invention that may relate to them.  
 
This report was cleared for public release by the Air Force Research Laboratory Public 
Affairs Office and is available to the general public, including foreign nationals. Copies 
may be obtained from the Defense Technical Information Center (DTIC) 
(http://www.dtic.mil).   
 
 
AFRL-IF-RS-TR-2007-200 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION 
STATEMENT. 
 
 
 
FOR THE DIRECTOR:  
 
 /s/       /s/ 
 
 
JAMES HANNA     JAMES W. CUSACK 
Work Unit Manager     Chief, Information Systems Division 
      Information Directorate 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings.  
 
 
 

http://www.dtic.mil


  

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection 
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, 
Paperwork Reduction Project (0704-0188) Washington, DC 20503. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

SEP 2007 
2. REPORT TYPE 

Final  
3. DATES COVERED (From - To) 

Mar 06 – May 07 
5a. CONTRACT NUMBER 

FA8750-06-2-0065 

5b. GRANT NUMBER 
 

4. TITLE AND SUBTITLE 
 
RAPID COMMUNITY OF INTEREST (COI) AND DEPLOYMENT USING 
KAOS AND CMAPS  

5c. PROGRAM ELEMENT NUMBER 
62702F 

5d. PROJECT NUMBER 
ICED 

5e. TASK NUMBER 
06 

6. AUTHOR(S) 
 
Andrzej Uszok and Jeff Bradshaw  

5f. WORK UNIT NUMBER 
01 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Florida Institute for Human and Machine Cognition (IHMC) 
40 S Alcaniz Street 
Pensacola FL 32502  

8. PERFORMING ORGANIZATION 
REPORT NUMBER 
 

10. SPONSOR/MONITOR'S ACRONYM(S) 
 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
AFRL/IFSE 
525 Brooks Rd 
Rome NY 13441-4505 

11. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 
AFRL-IF-RS-TR-2007-200 

12. DISTRIBUTION AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.  PA# AFRL-07-0088 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
The important results of the project include a deepened understanding of the community of interest (COI) lifecycle, definition of 
requirements for tools supporting COI lifecycle and description of the COI lifecycle dataflow.  Additionally, it was shown how 
consistent usage of ontology in the COI supporting tool can add significant flexibility and richness to the process.  The developed 
COI-Tool has these main features:   
- Capture and share COI configurations in two synchronized representations 
- Unique user-friendly Cmap environment with integrated Web Search, simultaneous collaboration and version control  
- Facilitation of the COI implementation through integration with OIM RI and KAos Policy Service 
- Reuse of COI models  

15. SUBJECT TERMS 
Community of interest, ontology, policy, concept maps, OWL, IMS, KAos, Cmap Tools COE 

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON 
James Hanna  
 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE 
U 

17. LIMITATION OF 
ABSTRACT 
 

UL 

18. NUMBER 
OF PAGES 
 

26 19b. TELEPHONE NUMBER (Include area code) 
N/A 

           Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18



 i

 
 Table of Contents 

List of Figures ................................................................................................................................. ii 
Executive Summary ....................................................................................................................... iii 
1. Project Overview ........................................................................................................................ 1 
2. Requirement Analysis of Communities of Interest Lifecycle..................................................... 4 

2.1 COI Exploration and Creation Phase Requirements............................................................. 4 
2.2 COI Implementation Phase Requirements............................................................................ 5 
2.3 COI Operation, Monitoring and Maintenance Phase Requirements .................................... 5 
2.4 COI lifecycle information sources and products .................................................................. 6 

3. Task Objectives and Technical Problems To Be Addressed ...................................................... 7 
4. Technical Results and COI-Tool Prototype Description ............................................................ 7 

4.1 General Architecture............................................................................................................. 8 
4.2 Tasks related to the COI Exploration and Creation Phase of the Lifecycle ......................... 9 
4.3 Tasks related to COI Implementation Phase of the Lifecycle ............................................ 13 
4.4 Tasks related to COI Operation, Monitoring and Maintenance Phase of the Lifecycle ..... 15 
4.5 Tasks related to METOC COI Demo.................................................................................. 17 

5. Conclusion ................................................................................................................................ 18 
Appendix A: COI-Tool installation guide .................................................................................... 19 
 



 ii

List of Figures 
 
Figure 1: Major Phases of the COI Lifecycle Supported by the Prototype .................................... 2 
Figure 2:  Major Phases of the COI Lifecycle Supported by the Prototype ................................... 3 
Figure 3: Summary of COI Lifecycle Needs and Solutions ........................................................... 4 
Figure 4:  Data products and dataflow of COI lifecycle................................................................. 6 
Figure 5: Developed COI ontologies and their relations ................................................................ 8 
Figure 6: Overview of the COE-KAoS-JBI integration for COI-Tool ........................................... 9 
Figure 7: GUI for creation of new domain specific COI and the result ....................................... 10 
Figure 8: GUI allowing to model COI roles and products............................................................ 10 
Figure 9: COE template for COI role ........................................................................................... 11 
Figure 10: COI-Tool collaboration features ................................................................................. 12 
Figure 11: GUI for creation of new implemented COI................................................................. 13 
Figure 12: GUI interface initiating bootstrap file generation ....................................................... 14 
Figure 13:  Example of monitored community of interest............................................................ 16 
Figure 14: Common METOC vocabulary of weather related concepts ....................................... 17 
Figure 15: Example Setup and components of the Korea METOC COI demo............................ 18 



 iii

Executive Summary 
 
Communities of Interest (COIs) are the means by which the strategy of net-centric information 
sharing is implemented. Unfortunately, the implementation of COIs has been hampered by a lack 
of methodologies and software tools to effectively support COI lifecycle spirals. The purpose of 
this project is threefold: 1) to broaden the understanding of the full lifecycle of the COI, 2) to 
develop a software prototype demonstrating how support for each element of the lifecycle might 
be provided, and 3) to integrate this prototype with the AFRL OIM RI in order to validate the 
approach and enhance IMS capabilities. 
 
Specific objectives for the COI-Tool prototype include the following: 
 

• Ability to model specific roles and physical resources for COI data producers and 
consumers so that each participant knows what is expected from them; 

• Ability to define the semantics and structure of the COI information in a way that allows 
automatic encoding in a formal computer processable notation; 

• Minimization of training and support requirements for COI and IMS personnel through 
simple user interfaces and automation of tedious aspects of lifecycle support; 

• Mapping and translation of simple incompatibilities between semantic information from 
different sources. 

 
The initial part of the project was devoted to understanding existing COI research, developing a 
detailed specification of requirements for each of the COI lifecycle phases, and determining how 
best to address each of these requirements. We assembled a sizeable collection of COI resources 
on the project Web page. From these resources and from discussions with Dr. Larry Warrenfeltz 
an IHMC expert and former commander at the Naval Oceanographic Office who has extensive 
experience in the creation of METOC COIs, we derived the requirements that guided the 
remainder of the project. 
 
In order to address the semantic aspects of COI modeling we based our approach on the most 
widely-adopted standard today for semantically-rich model representation: the W3C’s OWL 
(Web Ontology Language, http://www.w3.org/TR/owl-features). An exciting part of the results 
of this project was the first time integration and enhancement of two existing IHMC tools with 
the AFRL IMS (JBI RI 1.2.6) in order to create a comprehensive environment supporting the 
COI lifecycle. Numerous new mechanisms and capabilities had to been added to these tools to 
make this possible. 
 
A prototype supporting all three phases of the COI lifecycle was developed. In order to test 
usability of the developed methodology an example METOC community of interest was selected 
and developed using the tool. The important results of the project include a deepened 
understanding of the COI lifecycle, definition of requirements for tools supporting COI lifecycle 
and description of the COI lifecycle dataflow. Additionally it was shown how consistent usage of 
ontology in the COI supporting tool can add significant flexibility and richness the process. 
Additional information about COI-Tool and other technical results of the project are available at 
the project Web site http://ontology.ihmc.us/COI/. 

http://www.w3.org/TR/owl-features
http://ontology.ihmc.us/COI


 1

 
1. Project Overview 
A Community of Interest (COI) has been defined as “a collaborative group of users who must 
exchange information in pursuit of their shared goals, interests, missions, or business processes 
and who therefore must have shared vocabulary for the information they exchange” (Guidance 
for Implementing Net-Centric Data Sharing, DoD 8320.02-G, 12 April 2006, p. 11). COIs are the 
means by which net-centric information sharing is implemented, and members “are responsible 
for making information visible, accessible, understandable, and promoting trust – all of which 
contribute to the data interoperability necessary for effective information sharing” (ibid). 
 
For the purposes of this project we assume that the members of a given COI will have a common 
mission they are supporting and that there will be one person, the COI manager, who is 
responsible to make sure that the resources of the COI are adequate to fulfill that mission. To 
formally define such a COI, information about producers, consumers, data product schemas, and 
policies governing information sharing and any other interaction among parties must be 
modeled. In addition, roles and relationships that relate people, activities, and types of 
information must also be captured in a form that is easy for COI members to understand and use. 
This additional information includes things such as: 
 

• COI scope 
• types of information to be exchanged 
• types of consumers 
• infospace managers 
• applications used by information consumers 
• degree of information integration 
• information security activities 
• consensus set of vocabulary terms and definitions 
 

The process of formally defining all these elements will help the COI manager determine 
whether the aggregated assets are adequate for performing the mission. 
 
The implementation of COIs has been hampered by a lack of methodologies and software tools 
to effectively support COI lifecycle spirals (Fig. 1). The budding area of COI research has 
understandably focused on understanding the lifecycle and, in particular, the process of 
collaboration behind the creation of a common vocabulary. In support of such activities, the DoD 
has developed a Web-based Metadata Registry to enable schema sharing. The purpose of this 
project is threefold: 1) to broaden the understanding of the full lifecycle of the COI, 2) to develop 
a software prototype demonstrating how support for each element of the lifecycle might be 
provided, and 3) to integrate this prototype with the AFRL OIM RI in order to validate the 
approach and enhance IMS capabilities. 
 



 2

 
Figure 1: Major Phases of the COI Lifecycle Supported by the Prototype 

Specific objectives for the COI-Tool prototype include the following: 
 

• Ability to model specific roles and physical resources for COI data producers and 
consumers so that each participant knows what is expected from them; 

• Ability to define the semantics and structure of the COI information in a way that allows 
automatic encoding in a formal computer processable notation; 

• Minimization of training and support requirements for COI and IMS personnel through 
simple user interfaces and automation of tedious aspects of lifecycle support; 

• Mapping and translation of simple incompatibilities between semantic information from 
different sources. 

 
Requirements documents for the AFRL OIM RI (formerly JBI) listed the following objectives: 
 

• Information exchange; 
• Transformation of data; 
• Distributed collaboration; 
• Automatic incorporation of diverse units. 
 

This project will focus on the last two objectives, which to date have not been as thoroughly 
addressed in previous research as have the first two. 
 
A Quad Chart providing an overview of the project is given on the following page. 



 3

 
Figure 2:  Major Phases of the COI Lifecycle Supported by the Prototype 



 4

2. Requirement Analysis of Communities of Interest Lifecycle 
The initial part of the project was devoted to understanding existing COI research, developing a 
detailed specification of requirements for each of the COI lifecycle phases, and determining how 
best to address each of these requirements. 
 
We assembled a sizeable collection of COI resources on the project Web page. From these 
resources and from discussions with Dr. Larry Warrenfeltz an IHMC expert and former 
commander at the Naval Oceanographic Office who has extensive experience in the creation of 
METOC COIs, we derived the requirements below. 
 

 
Figure 3: Summary of COI Lifecycle Needs and Solutions 

2.1 COI Exploration and Creation Phase Requirements 
During the exploration and creation phase, the COI Manager and participants has to define a 
model for the COI. The important part of this process is agreement on used terms and 
vocabularies. 
 
Three main requirements were identified: 
 

• Easy-to-understand formal models of COI information requirements. The COI-Tool must 
capture COI requirements and structure in an easy-to-understand format that can be 
automatically transformed into a formal model of COI information requirements. The 
Cmap Ontology Editor (COE) allows ontologies to be expressed in graphical Concept 
Maps rather than in a XML syntax, thus minimizing IMS personnel learning 
requirements. The tool was adapted to provide contextual filtering of menu items to 
narrow choices to only these consistent with the current view of the model. 



 5

• Support for collaborative COI development. To facilitate the process of achieving 
consensus on COI vocabulary, roles and information to be exchanged, the COI-Tool 
should provide support for both synchronous and asynchronous distributed collaboration 
of COI participants. The real-time model-sharing and history recording and playback 
features of COE address this requirement. 

• Ease of reuse. COE graphical templates allow individual model elements or larger model 
structures to be easily extended and reused, thus saving development time in similar COI 
applications that may later arise. In addition, data from the DoD metadata repository, 
from Web searches, and WordNet can be easily accessed and reused as starting points in 
COI development. 

2.2 COI Implementation Phase Requirements 
This phase of the COI lifecycle involves physical implementation of the COI: 
 

• Link abstract COI model to implementation model. Support for this phase must allow 
mapping and role assignment from the abstract COI model to both physical assets (e.g., 
military units, individuals) and data resources. Software components must be 
implemented or adapted to connect the required resources of producers and consumers to 
the community infospace. Additionally metainformation for community data products has 
to be easily generated from the model. The COI-Tool prototype provides a graphical 
interface to support mapping functions. Once the mapping is complete, a COI Manager 
can use COI-Tool to automatically generate configuration files and software stubs for 
OIM RI clients that will be used by producers and consumers. Metadata generation is 
achieved without extra effort in COI-Tool due to the fact that the underlying encoding of 
COE is already in OWL, permitting the straightforward development of an automated 
algorithm to map this representation to the XMLSchema needed by OIM RI. 

• Data product policies. COIs need an expressive and flexible way to define data product 
access and filtering policies. COI-Tool provides this functionality through its integration 
with KAoS Policy and Domain Services, which can directly use the OWL ontology of the 
COI model. 

• Harmonization of vocabulary. Finally, any realistic COI will need a way to accommodate 
simple differences in vocabulary among partners within the COI model. COI-Tool 
provides a prototype of simple semantic translation. 

 
2.3 COI Operation, Monitoring and Maintenance Phase Requirements 
During the operational phase the COI Manager must have the capability of: 
 

• Monitoring configuration, activity state, and policy compliance. Authorized COI 
participants must be able to monitor activities inside the community, to discover 
discrepancies between the model and reality, and to be notified if community policies are 
violated. COI-Tool addresses these requirements through the integration of OIM RI, 
existing KAoS Policy Services, and KAoS’ new monitoring capabilities. Visualization of 
monitored data is presented as specialized concept map. 

• Monitoring producer/consumer/info object relationships. Support for this function is also 
provided by new KAoS monitoring features. 

• Collecting overall history and statistics. This requirement is addressed in COI-Tool by 
adaptation of the COE recording mechanism. 



 6

2.4 COI lifecycle information sources and products 
The results of our analysis of information flow in the process of creating, implementing and 
operating the COIs are presented on Figure 4. First, the COI Manager may use different sources 
of information to bootstrap the process of defining the initial model. Combining specific schemas 
pulled from the DoD Metadata Repository as well as saved data from previous COIs with the 
generic COI and KAoS ontologies and results from the integrated Web and WordNet1 searches, 
the community model can be rapidly assembled from reusable components and extended to meet 
new requirements. The model at this stage does not represent any concrete COI but rather a 
reusable template of the given type of community. For instance, there are many METOC 
(meteorological) communities in the military that share the same or similar roles and weather 
data products. So defining a generic template for the METOC community and only refining it for 
specific case can be a time saver. 
 

 
Figure 4:  Data products and dataflow of COI lifecycle 

The resulting COI Configuration Template contains the following information: 
• Links to needed ontologies that specify vocabulary for definition of roles and data 

product structures, 
• Specific producers and consumer types, 
• Detailed structure of data products, 
• A set of generic policies 
• Specific resources such as maps, images, documents, etc. 

 

                                                 
1 http://wordnet.princeton.edu/ 

http://wordnet.princeton.edu


 7

From the COI Configuration Template, a concrete COI Configuration can be created by mapping 
producer and consumer roles from the template to resources such as military units, databases, 
UAVs, and so forth. 
 
Once the available resources have been mapped to assigned roles, software stubs for the 
implementation phase can be automatically generated. In this phase, additional details must be 
decided and implemented. For instance, developers responsible for particular consumers or 
producers will use the stub generated by the COI Manager either to implement new services or 
connectors to existing ones. The COI Manager can refine (add/change/remove) policies 
originally defined as part of the generic COI Configuration Template model. As required, simple 
semantic translations can be defined in order to harmonize data from incompatible participants. 
 
Finally, the clients can now be activated inside infospace. The COI Manager can obtain 
information about participant status, relations between them and policy fulfillment. 

3. Task Objectives and Technical Problems To Be Addressed 
During the development phase of the project, our objective was to build and test a prototype 
implementation of the requirements enumerated during the analysis phase of the project. 
 
In order to address the semantic aspects of COI modeling we based our approach on the most 
widely-adopted standard today for semantically-rich model representation: the W3C’s OWL 
(Web Ontology Language, http://www.w3.org/TR/owl-features). An exciting part of the results 
of this project was the first time integration and enhancement of two existing IHMC tools with 
the AFRL IMS (JBI RI 1.2.6) in order to create a comprehensive environment supporting the 
COI lifecycle. Here is a brief description of the IHMC tools that we leveraged as part of the 
project: 
 
• COE (Cmap Ontology Editor, http://cmap.ihmc.us/coe) allows OWL ontologies to be 

conceptualized, developed, and managed though a powerful graphical interface. Unlike 
similar tools, COE was specifically developed in order to exploit patterns of OWL structure 
to make it easier for both experts and non-specialists to use (e.g., hiding irrelevant 
information, use of templates for frequently-used patterns). 

• KAoS (http://ontology.ihmc.us/) is a robust and mature services framework that relies on 
OWL in the specification, analysis, and enforcement of policy constraints across a wide 
variety of distributed computing platforms. 

 
During the project these two tools and AFRL OIM RI had to be integrated for the first time into a 
coherent system, reusing the same semantics throughout all aspects of its operation. Numerous 
new mechanisms and capabilities had to been added to these tools to make this possible. 

4. Technical Results and COI-Tool Prototype Description 
A prototype supporting all three phases of the COI lifecycle was developed. Additional 
information about this tool and other technical results of the project are available at the project 
Web site http://ontology.ihmc.us/COI/. This Web site contains links to: 

• general COI resources, 
• METOC COI references, 
• COI ontology, 

http://www.w3.org/TR/owl-features
http://cmap.ihmc.us/coe
http://ontology.ihmc.us
http://ontology.ihmc.us/COI


 8

• COI-Tool distribution and installation guide, 
• Cmap Server with the demo METOC COI Configuration models and ontologies, 
• video tutorials. 

 
Below, we give a detailed description of task performed and functionality developed. 

4.1 General Architecture 
The tool functionality has been based on ontology. It was assumed that any model of community 
of interest will start from the generic COI ontology developed during the project, which is based 
on the KAoS ontology. Through this any community model can be a source of vocabulary for 
KAoS defined policy. Generic COI ontology captures the basic elements of any COI. Using it as 
a starting point for domain specific COI ontologies establishes a common ground that will help 
standardize practice and enable collaboration across COIs. Further to ground the tool to OIM RI 
mapping between the COI ontology and JBI ontology developed in the J-DASP project 
(http://jbi.isx.com/jdasp/). COI-Tool produces further layers of specialization to the concrete 
COI ontologies (Figure 5). 
 

 
Figure 5: Developed COI ontologies and their relations 

Ontology modeling work was a continuous source of requirements for enhancements of the 
modeling functionality of the COE Ontology Editor. 
 
The COI-Tool is integration of COE, KAoS and OIM RI. COE is used for almost all the 
graphical interaction with the user with exception of policy definition, which is done by KAoS 
KPAT interface. We did, however, develop functionality allowing browsing and displaying 
policies in COE. KAoS provides policy, domain and matching services as well as serving as an 
integration framework for the COI-Tool, conveying messages between COE and OIM RI clients 
fulfilling roles in a concrete operating COI. 
 

http://jbi.isx.com/jdasp


 9

 
Figure 6: Overview of the COE-KAoS-JBI integration for COI-Tool 

4.2 Tasks related to the COI Exploration and Creation Phase of the 
Lifecycle 
This task aimed to provide a rich graphical environment allowing for modeling of the COI 
Configuration Template and its mapping to the concrete configuration. 
 
Considerable effort was spend on the enhancement of the COE Ontology Editor functionality. 
When this project started, COE was quite limited in its core ontology modeling functionality and 
during this project we added the ability for COE to edit and integrate multiple ontologies, an 
essential requirement for real applications. We also implemented a mechanism to automatically 
generate OWL encodings of a map and to store these on the CmapServer. 
 
A COI manager is provided with the following functionality when he wants to create a new COI, 
modify an existing one, or collaborate with other COI managers: 
 
Creation of a new COI template 
This generate four COI configuration template placeholders for definitions of community 
partners (roles/actors), data products, classes of actions and COI properties such as information 
about managers identity, used applications, and so forth. (Fig. 7) 

 



 10

 
Figure 7: GUI for creation of new domain specific COI and the result 

These placeholders are empty concept maps dedicated to particular part of the community model. 
However they are linked with appropriate part of the COI generic ontology, so the menu of 
concepts available in the particular maps is narrowed to its context. The new COI template can 
be started from the generic ontology or from existing COI templates then the new maps are 
linked to the models of the parent configuration. 
 
Definition of COI properties, Roles and Data Product 
A COI manager can open any of these maps in the editor and graphically define concepts and 
their relations. He can uses the Semantic Space Panel, developed in the scope of this project, to 
access concepts defined in other concept maps (ontologies) such as for instance the weather 
ontology when defining weather forecast products (Fig. 8). 

 

 
Figure 8: GUI allowing to model COI roles and products 

The Semantic Space (Namespace) Panel functionality includes the ability to: 



 11

– Show a list of concepts, from the selected namespaces, (as a hierarchy with additional 
information) applicable to a given selected map node, 

– Allow the user to drop a selected concept on the map node and automatically create 
appropriate map semantic constructs, 

– Show current semantic information, from the chosen namespaces, about the selected map 
node, 

– Use the Pellet reasoner through Jena to compute the menu list based on the selected concept 
node. 

 
Usage of Web Search and WorldNet 
COI-Tool provides access to Web resources to get concept definitions and related concepts. The 
concepts found can be easily added to the map by creation of new map nodes using the button 
from this search window. 

 
Definition of Relationships between COI Roles and COI Products through the use of COE 
Templates for map elements 
In the scope of the project, we developed automatic generation of concept map templates to be 
used in child maps. When a given community map is saved, a set of templates is generated from 
them, making it easy to create subclasses or instances of concept from this map. So, for instance, 
it is easy to specify that a given community role is a specialization of some other role because of 
the existence of the template. Annotation of every map with the parent ontology allows the tool 
to select which template should be shown for a given map. In addition there is a set of static 
templates making creation of generic ontological relation easy. This set can be easy extended by 
as COE itself is an editor for templates. COI-Tool has a special panel dedicated to template 
management (Fig. 9) 
 

 
Figure 9: COE template for COI role 

Usage of Collaboration Functionality 
The COI Manager and his partners are able to simultaneously open and edit a concept map with 
community vocabulary and models (Fig. 10). They will see other edits and annotations and are 



 12

able to send chat messages to themselves. This mechanism allows them to archive Consensus on 
concepts definitions, data product definitions, etc. 
 

 

 
Figure 10: COI-Tool collaboration features 

 
Addition of links and multimedia resources 
A COI manager can adds urls to web resource, links to documents and maps to COI concept in 
order to facilitate their human understanding of the crated community model. 

 
Access to Map historical versions 
COE has been integrated with Subversion2 so it is possible to access previous versions of the 
developed maps from the integrated version repository. 

 
Creation of a new implemented COI Configuration 
A COI manager can creates a implementation of a COI Configuration Template from COI-Tool 
GUI (Fig 11). The dedicated map for mapping between resources and community roles will have 
associated templates making this process easier. 
 

                                                 
2 http://subversion.tigris.org/ 

http://subversion.tigris.org


 13

 
Figure 11: GUI for creation of new implemented COI 

4.3 Tasks related to COI Implementation Phase of the Lifecycle 
Tasks in this area tried to provide mechanism making software implementation of the defined 
community easier. The mechanisms developed here are targeted for realization of the COI as 
cooperating clients in infospheres based on ARFL OIM RI 1.2.6. 
 
Generation of bootstrap files and code skeletons 
A COI manger generates a set of files (Fig. 12) for each of the community participant and sends 
it to the developers in the particular unit. This set contained only the relevant information for the 
given partner. Based on it the developer can implement OIM RI client providing and consuming 
given metainformation types and participating in the COI. These files are: 

• KAoS agent bootstrap file allowing to the integration of the partner client with the KAoS 
Policy Service. It containing the following information 

• Actor name, 
• Domain (COI) memberships, 
• Ontology types, 
• List of production channels with the data type of products, 
• List of the subscription channels with the data type of consumed info objects. 

• OIM RI client stub file with code opening publish/subscription channels specific to a 
given partner JBI client, for instance: 

weatherSensorReportSub = 
initSubscriberChannel(OntologyConcepts.WEATHER_SENSORREPORT_JBI_TYPE, 
"1.0", null); 



 14

WeatherWarningChecker callback = new 
WeatherWarningChecker(weatherSensorReportSub, 
OntologyConcepts.WEATHER_SENSORREPORT_CLASS); 
weatherSensorReportSub.setSequenceCallback(callback); 

• Data type schema files (OWL or mapping to XML Schema), 
 

 
Figure 12: GUI interface initiating bootstrap file generation 

 
Definition of COI policies 
OWL representation of COI configuration defined in COI-Tool can be directly used as ontology 
vocabulary to define COI policies in KAoS. Policies can be defined using KPAT and during 
community operation a list of policies applicable to a given partner can be also accessed from 
COI-Tool. Using KAoS is it not only possible to define authorization policies controlling 
distribution of information but also obligation policies obliging for instance timely manner of 
issuing periodic updates. 
 
Definition of semantic translation 
In reality, when implementing COI; some partners can use different then agreed in the COI 
representations of data, for instance when coming from some other community of interest. COI-
Tool has been equipped with a prototype graphical interface allowing mapping of structures 
between two ontological classes defining schemas for data products. The interface generates 
translation code in SPARQL3, which then can be used to translate concrete data. 

                                                 
3 http://www.w3.org/TR/rdf-sparql-query/ 

http://www.w3.org/TR/rdf-sparql-query


 15

4.4 Tasks related to COI Operation, Monitoring and Maintenance 
Phase of the Lifecycle 
In order to provide monitored functionality and other for the community of interest implemented 
in OIM RI we have developed the interceptor layer for OIM client, which provided the following 
functionality: 

• Partner activation and relation monitoring 
– Reports when partner is activated and what data products and from whom it 

received, 
• Statistical information about the relation 

– First/last time of data consumption, frequency of consumption, average time 
between consumption, etc. 

• Authorization policy checking, 
• Obligation policy monitoring, 
• Semantic Translation, if needed. 

 
We renamed OIM RI client.properties file to clientOriginal.properties and wrote a new 
client.properties file as below: 
 

<capi.implementation> 
 <sequences> 
 <subscription>coi.jbi.interceptors.KAoSSubscriberSequence</subscription> 
 <publication>coi.jbi.interceptors.KAoSPublisherSequence</publication> 
 <query>coi.jbi.interceptors.KAoSQuerySequence</query> 
 </sequences> 
 <connections> 
 <connection.manager> 
  coi.jbi.interceptors.KAoSConnectionManager</connection.manager> 
 <connection>coi.jbi.interceptors.KAoSConnection</connection> 
 </connections> 
 <repositories> 
 <mdr>mil.af.rl.im.capi.client.core.plugin.j2ee.typemgt.MetadataRepository</mdr> 
 </repositories> 
</capi.implementation> 

 
The KAoS interceptor layer for OIM client when initialized reads the clientOriginal.properties 
and forwards the CAPI calls to the original implementation when it performed the functionality 
listed above. All of it is transparent to the client. 
 
Monitoring of partners activation and relations 
The information intercepted in the OIM RI client are forwarded through KAoS to COE if the 
map with the community model is opened by the manager. The map will show which 
participants are active and if any unanticipated client exists. It will also show through line any 
producer–consumer relation and when clicking on the link statistical information such as when 
the last information was exchange, how many has been exchanged, what is the average time, etc. 
 



 16

 
Figure 13:  Example of monitored community of interest 

 
Monitoring of obligation policies 
In order to monitor producer of information fulfillment of their obligation we have developed a 
new KAoS mechanism - policy monitor, which allow determining compliance with the 
obligation policies. If there is violation a feedback loop to the COI Monitor Mode is activated 
and the notification show up on the map. 
 
Recording of monitoring session and access to recorded session 
The recorded history of monitored session can be stored in a special folder associated with the 
COI configuration. Any recorded session can be later replayed. 



 17

4.5 Tasks related to METOC COI Demo 
In order to test usability of the developed methodology an example METOC community of 
interest was selected and developed using the tool. We research this community and collected set 
of references on http://ontology.ihmc.us/coi/metoc.htm. Using the COI-Tool we developed a 
weather ontology (Fig 14) and then using it we defined different weather data products as we 
found in the collected military documents. 
 

 
Figure 14: Common METOC vocabulary of weather related concepts 

Based on the concrete documents defining the Korea METOC Operation Plan as well as Air and 
space weather operations, we have defined roles in the community and then mapped them to the 
actual unities in the Korea military area. Developed models of METOC producers, consumers 
and their products are available form IHMC CmapServer: 
http://72.236.182.134:8082/servlet/SBReadResourceServlet?fid=1165296186234_280532411_9
85. The model was then used to generate bootstrap files and stubs for example clients, which 
were developed in OIM RI 1.2.6. The clients simulated collection of weather sensor data, 
distribution of it to the weather forecast centers. The centers were obliged to periodically 
published weather forecast and if necessary warnings. The example setup of the demo with the 
components is presented on Figure 15. 
 
This usecase proved that using the tool it is possible to develop the concrete military community 
of interest and support all the elements of its lifecycle. 
 

http://ontology.ihmc.us/coi/metoc.htm
http://72.236.182.134:8082/servlet/SBReadResourceServlet?fid=1165296186234_280532411_9


 18

 
Figure 15: Example Setup and components of the Korea METOC COI demo 

5. Conclusion 
The important results of the project include a deepened understanding of the community of 
interest lifecycle, definition of requirements for tools supporting COI lifecycle and description of 
the COI lifecycle dataflow. 
 
Additionally it was shown how consistent usage of ontology in the COI supporting tool can add 
significant flexibility and richness to the process. 
 
The developed COI-Tool has these main features 

• Capture and share COI configurations in two synchronized representations: 
o Graphical concept maps – easy to use by human, 
o Transparent OWL encoding – computer processable, 

• Unique user-friendly Cmap environment with integrated Web Search, simultaneous 
collaboration and version control, 

• Facilitation of the COI implementation through integration with OIM RI and KAoS 
Policy Service, 

• Reuse of COI models. 
 
As any research project also this enumerated many additional features which felled outside the 
scope of work. Possible and very valuable COI-Tool extensions would be: 

• Integration with DoD Metadata Registry through the Web Service interface, 
o to browse and reuse existing Metadata and Taxonomies 
o to contribute developed COI Taxonomies and Schemas (when the DoD Metadata 

Registry Web Service interface has this functionality) 
• Integration with OIM Metainformation catalog to automatically submit COI products 

metainformation schemas, 
• Exploration of support for COI workflow/actions, 
• Better support for dynamic communities. 



 19

Appendix A: COI-Tool installation guide 

The information about the access to the distribution of the COI-Tool is available from the 
authors of the report. 

The COI-Tool consists of few integrated components which require separate installation, 
preferably in the below sequence: 

1. Install in any chosen location the KAoS Distribution. 

Set up the environment variable KAOS_HOME to the directory where the KAoS is installed 

2. Install the latest release of the CmapTools for Windows (Linux, Mac or Solaris can be made 
available on request). 

When installing chooses option to not install any icons on your desktop or any other place. COI-
Tools do not use them and their presents can confuse you in the future. 

Set up the environment variable CMAPTOOLS_HOME to the directory where the CmapTools is 
installed 

3. Install in any chosen location the COI-Tools distribution. 

4. Execute the ant script (its default target) from the folder scripts/coe-init from the COI-Tools 
installation 

5. You can choose from three options to store models of your COIs: 

• Local storage - the same computer on which the tools are installed. If you choose this 
option you have to execute ant script (its default target) in the folder scripts/local-coi-
storage-init from the COI-Tools installation. 

• Existing COI CmapServer at IHMC. If you choose this option you have to configure a 
new Place in CmapTools after you start it. Choose Places from the menu on the left and 
click on the icon in the right corner Add Place. In the form choose Add a place which is 
not on the list and use norma.ihmc.us (if not reachable please use numeric ip address: 
72.236.182.134) for the Internet Host Name, 4447 (default) for the Port Name and 8082 
for the Web Server Port Name. This should add a new place IHMC COI to your list of 
places in CmapTools. 

• Private CmapServer on any host in your network. Install the CmapServer for Windows 
(Linux, Mac or Solaris can be made available on request). Set up the environment 
variable CMAPSERVER_HOME to the directory where the CmapServer is installed. Also 
install COI-Tools installation (see point 4) on the same host and execute the ant script (its 
default target) in the folder scripts/private-server-coi-storage-init from the COI-Tools 
installation. 

6. Install the JBI release 1.2.6 client part on the same machine 



 20

Set up the environment variable JBI_HOME to the directory where the JBI is installed. 

7. To run the COI-Tools suite use the following sequence: 

• start KAoS executing the ant script in the folder scripts/coi with target run-coi-kaos from 
the COI-Tools installation, 

• start COI-Tools executing the ant script in the folder scripts/coi with default target from 
the COI-Tools installation, 

• to run demo COI configuration run ant script in the folder scripts/jbi-demo from the COI-
Tools installation, 

• you can connect to and monitor the demo COI of METOC community of interest started 
using scripts/jbi-demo by selecting the option Monitor Implemented COI on the 
KoreaAirForceMETOCCOIActor from the Implemented COIs at IHMC (see point 5) 
in your running COI-Tools. If you are asked for the KAoS http address please update the 
ip address in the following url to the one matching the computer on which you running 
KAoS DS: http://127.0.0.1:8081/examples/servlet/TCPServlet and provide it to 
CMapTools. 

8. To enable storing and reviewing of COI configuration history do the following: 

Prerequisites: 

Install Subversion version 1.3.0 or later. Note: Ensure your subversion install includes the Java 
HL client adapter; otherwise, you can download and install the java adapter separately. 

Setup: 

• Create an empty SVN repository (using the file-based repository type, not BerkleyDB). 
Sample command: svnadmin create --fs-type fsfs "c:/path-to-
subversion/subversion/svnrepo" 

• Checkout the empty repository to either: 
o 'My Cmaps' for a client install or 'serverRootFolder' for a server install. 
o Server sample command: svn checkout "file:///c:/path-to-subversion/subversion/svnrepo" 

"c:/path-to-root/serverRootFolder" 
o Client sample command: svn checkout "file:///c:/path-to-subversion/svnrepo" "c:/path-to-

mycmaps/My Cmaps" 
o Note: Do not commit the contents of the serverRootFolder or 'My Cmaps' to Subversion 

manually. When the server or client starts-up it will automatically update the Subversion 
repository with the contents of the root folder and all subfolders. 

• Edit the configuration settings to enable version control and set the Subversion location 
information. 

o Server file: serverconfig.txt 
o Client file: cmaptools.cfg 
• Enable SVN version control. audit.svn.enabled=true 
• Set the URL to the Subversion repository audit.svn.repository.trunk.url=file\://C\:/path-

to-subversion/subversion/svnrepo 
• Add the subversion/bin/ and subversion/javahl/ paths via VM arg -Djava.library.path or 

LD_LIBRARY_PATH environment variable 

http://127.0.0.1:8081/examples/servlet/TCPServlet
file:///c:/path-to-subversion/subversion/svnrepo
file:///c:/path-to-subversion/svnrepo
file\://C\:/path-to-subversion/subversion/svnrepo
file\://C\:/path-to-subversion/subversion/svnrepo
file\://C\:/path-to-subversion/subversion/svnrepo



